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The method of integration with respect to the frequency of the radiation field in 
systems with complex spectrum is generalized in order to obtain heat-exchange char- 
acteristics integrated with respect to the angles, 

i. The method developed in [1-3] to obtain radiation intensity field characteristics 
integrated over the whole spectrum permits the computation of the radiation heat transfer 
in three-dimensional systems of any geometry with an arbitrary parameter distribution, If 
the system does not possess a high degree of symmetry, the integration of the intensity or 
directional divergence fields with respect to the angles should be performed during solution 
of the gasdynamic problem. 

To illustrate the possibilities of the method of partial characteristics, a number of 
examples of radiation heat-transfer fields was computed in systems modeling combustion cham- 
bers, elec~:ic arc apparatus, light punch through during laser-beam focusing [4]. The radi- 
ation flux S and its divergence AS were calculated by means of (i) and (2) from [3], Exam- 
ples of such systems are shown in Figs. IA and B(a), The cylindrical volume in Fig, iA(a), 
with a cylinder diameter-to-altitude ratio on the order of one, simulates a combustion chamber 
or a short electrical arc. The spherical volume in Fig, iB(a) models the domain of a laser 
spark with beam focusing from the positive x axis side, Isotherms are shown in Figs. IA, 
B(a) by continuous curves on the volume sections, and isobars by the dashes. It is seen from 
Fig. IB(a) that the high temperature and pressure domain is shifted against the beam, The 
system dimensions were selected on the order of several r the temperature and 
pressure fields are given in the respective ranges T - (I0-20).I03~ and P - 5-10 bar, 

The matrices AI and ASim (see [3]) were computed within the limits of the parameters 
mentioned for the model spectrum described in [1-3], The accompanying spherical (r, 0~ r 
coordinate system was coupled to the countable points of the volumes, The outer integrals 
with respect to 0 and r were evaluated in the usual manner, and the inner integral with 
respect to r -- by means of (6) and (14) from [3], where the limits of the beam O--L were 
determined automatically by using a special BC ("boundary checking") procedure. The BC 
procedure contains information about the boundaries of the volume under consideration, and 
possesses the property of cutting off integration prior to emergence from the volume in order 
to prevent the selection of "strange" numbers. 

Summation of the divergence was performed algebraically, and their components were 
stored for the fluxes; 

0 0 

S~ = ( .I I (0, (p) sin2 0 cos cpdOdqD, (2) 
bo 

S~ = .( .t'I (0, q)) sin20 sin rpdOd% (3) 
0 0 

S, = S.i" I (0, rp) sin 0 cos OdOdq), (4) 
0 0 
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Fig. I. Radiation flux field and the divergence field in a volume: 
A) modeling a short electrical arc; B) optical breakdown by a focused 
laser beam. 

Evaluation of the flux ~ and its divergence A~ at a given point requires just fractions 
of a second on the BESM-6 electronic computer, The results of computations are shown in 
Figs.: IA and B(b). The flux vectors are shown with their components, and the divergence 
is displayed by hatched lines. 

2. In some cases the gas volume considered in the problem will possess a sufficiently 
high degree of symmetry and can be replaced approximately by a volume with a one-dimensional 
parameter distribution. The integration with respect to the angles can hence be performed 
in advance, just as with respect to the frequency, in the preparation of the partial charac- 
teristics. Computation of the flux and divergence fields becomes particularly simple in this 
case since it is reduced to sampling from an array and a single integration of the appropri- 
ate partial characteristics. 

The most widespread model of this kind is the approximation of a flat layer [5], which 
is used extensively in astrophysics and gasdynamics, The computed relationships for the rad- 
iation flux and its divergence can be written in this case in the form 

L 

S (X) = ,i AS (~, X) sign (X -- ~) d~, 
0 

(5) 

/.. 
V'S (X) = So (X) -- t" ASi (~, X) d~, (6) 

0 

X 

AS(~, X ) =  2.f S~ .f k'v(~l) d~l )dr, (7) 

So (X) = 4 ,~ S O (P0 k$ (X) dr, (8) 
0 

,,0 X 

0 ~, 

(9) 

The coordinate system here corresponds to Fig, i from [3], the notation and meaning of the 
functionals AS, the partial flux ASi, the partial sink, as well as the source So are analo- 
gous to the intensity introduced for the fields in [3], El(T) and E2(T) are exponential in- 
tegrals [5]. Direct utilization of (6), (8), and (9) is inconvenient. In addition to the 
reasons discussed in [3] and associated with the presence of sections with a high absorption 
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coefficient in the spectrum, additional difficulties are produced by the presence of a zero 
logarithmic divergence in the function E:(T). Performing an identity transformation analo~ 
gous to that mentioned in [3], we obtain expressions without the listed inconveniences. 
Furthermore, introducing splines modeling the distribution of the parameters T and P on the 
path x = I$ -- X[, we will have the final computational scheme for the flat layer 

X 

AS = 2 .f SO (T~) kS (T~, P~) E2 ( j' k; 06 d'l) dr, 
o o 

(io) 

X 

S o m : 2  ~S~ kv(Tx, Px)E~(,[ k'~O1)d~l)dv, 
~o o 

(ii) 

. X 

ASim = 2 ~ [S o (T~) --S O (Tx)l k'v (Tb P~) k'v (Tx, Px) E, ( S k'v @1) d~l) dr. 
0 0 

(12) 

The flux is computed by means of (5), and the divergence by means of 

x L L 
vS(X) = Sore I +  Som 1-- ~ A Sire (~, X)d~. (13) 

0 X 0 

f 
The l aye r  a b s o r p t i v i t y  J k~ (~)dll models the absorp t ion  on the path g+X in (10) and (12) 

0 
and on the paths X § 0 and X + L in (ii). Moreover, just as for the intensity, the source 
Som agrees with the partial flux AS to the accuracy of the indices so that it is necessary 
to compute just two matrices beforehand: AS and ASim, where the latter has a volume equal to 
half the volume of the matrix AS because of antisymmetry relative to the inversion ~ SX. 
Methods of approximating the parameter distribution by model splines are identical to methods 
discussed in [3]. The properties of the functional (10)-(12) do not differ from the propertie~ 
of the corresponding functionals for the intensity field (see Figs. 5 and 6 in [3]). Let us 
note that even these and other functionals are conveniently tabulated in dimensionless form 
to attenuate their dependence on the source parameters. For instance, the expressions 

S S~ (T~) k'v(T~, P%) dvand i [S~ (T~)-]- S~ kv(T~, P~) kv(Tx, Px) dv 
0 0 

can be used as normalizing functions for the corresponding functiona]s, The results of com- 
paring exact computations with those obtained by the method of partial characteristics for 
a flat layer are analogous to the results of comparing the intensity fields (see Figs. 7, 
8, 9 in [3]), and are consequently not presented, 

3. In a number of cases one-dimensional models of a sphere (for the computation of 
explosions [6], laser compression of spherical targets [7, 8], etc,) and of an unbounded cyl- 
inder in the axial direction (mainly for the analysis of arc discharges [9-11]) are used. 

By computing the energy passing through unit area at the point X, which has been emitted 
by spherical and cylindrical surfaces of unit thickness and of radius E, and taking account 
of absorption on the path from the source to the point X, we obtain expressions for the par- 
tial fluxes (Fig. 2a and b): 

For the sphere 

AS = 2 .( S O (~) kv (~) ~2 ~(X --  ~ cos 0) sin0 exp (--'~*) dOdv, 
0 b ~3 

(14) 

For the cylinder 
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Fig. 2. To derive expressions for the rad- 
iation flux in the case of spherical (a) and 
cylindrical (b) geometries, 

Here, for generality, 
the polar angle by 0; 

aS 2 S ~  2 X - - ~ c o s 0  (2~ �9 = ' . - -  Ko (xv) dOdv. 
0 ~ rlZ 

(15) 

the radius of the computed point is denoted by X in both cases, and 

~1 = v~X 2 + ~ 2 .  2X~ cos 0; (16) 

x ~ = f  k;(0 dr 
v J 

Determination of the function K}a)(T~)r and the limits of integration in the integrals 
with respect to r are discussed below. 

The radiation flux at the point X is expressed in terms of the partial quantities (14) 
or (i5) by means of (5), where L should be understood to be the outer radius of the cylinder 
or sphere in this case. 

The expressions for the radiation flux divergence are obtained by differentiating (5) 
with respect to X in the appropriate coordinate system while taking account of (14) and (15), 
It is convenient to represent the results of the calculation in the form (6),where So(X) is 
expressed by means of (8) and 

ASi (~, X) ---- 2 i S~ (~) kS (~) k,) (X) @~ (X, ~) dr. 
0 

(18) 

The functionals 0v(X , $) have the form: 

For a sphere 

i( ,~-)2 [ ~2(XZ-}-~Z)c~176 @~--- sin0 1 - - F ( X , ~ , 0 )+  X ~13k$(X) (19) 

For a cylinder 

i-~--{ ~ (X2+ ~z)cos0--2X~ K~o 2) ('c*)}d0. (20) .~ = != [l--FiX, ~, 0)]/<(o'~(~*)§ n~k;(X) 
Here 

F = X~z (X cos0 -- ~) (X -- ~ cos0) sinZ0 j, rk'v (r) dr 
~12kv (X) (r2rlZ= - XZ~ZsinzO) 3/2" 

(21) 
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The functions Ko(~)(T) and K(2)(T)in (15) and (20) are the first and second integrals of the 

MacDonald cylinder function /(0 (T) ---- i exp_(-- Tx) dx with respect to the parameter, respectively; 
i ! x ~ -- 1 

i exp(--Tx)  d x = ~ K o ( o ~ ) d o : ,  (22) 
t (~l)  ('~) ----- x 1/ 'X 2 - -  1 .~ 

i exp (=- ~x) ? K~o ~ ('0 = o ~ d x =  K(o ~ (~) e~. (23)  
x ' v x  - -  1 

The i n t e g r a t i o n  parameter x in  (22) and (23) i s  r + ( z / n T ,  Tables  of  Ko ( ' )<~)  were ~ i r s t  
c a l c u l a t e d  i n  [12] ,  and l a t e r  r e p r i n t e d  o r  newly  e v a l u a t e d ,  Graphs of  t h e  f u n c t i o n  Ko(2)(~) 
a r e  p r e s e n t e d  i n  [13 ] .  

The limits of integration with respect to r in (17) and (21) can be written in the form 
of the following scheme: 

for ~ -~ X, if 0 ~ arc cOS ~ x x - - ,  or eXse f ---- i" orelse [----- S -]- 2J" , (24) 
X ~ ~ ~mi~ 

X 
for ~ ~ X, if 0 ~ arc cos 

X ~ r a i n  

Here 

X~ sin 0 
rml n -- (25) 

n 

Let us note that the partial sinks ASi(~, X) given by (18) do not have so simple a mean- 
ing as absorbed energy from the appropriate sources as in the case of intensity or in the 
flat layer model. The physical meaning of an energy sink has just an integral in the right 
side of (6). 

Formulas (6), (8), (18)-(21) are suitable for evaluation of the radiation flux diver- 
gence fields;however, for the reasons discussed above and in [3], a very small step in in- 
tegration with respect to ~ is required near the point X, In order to avoid this and to have 
the opportunity to use a gasdynamic mesh in the computations, (6) can be converted by a meth- 
od analogousto that used in [3]. The results can be represented in the form (13), which is 
convenient for the computation of the divergence field, Hence 

0 

=is ~ A Sire (X, [) 2 [ ,, ([) - -  S o (X)] k~ (X) k(, ([) ~,,, (X, [) dr. 
0 

(26) 

(27) 

As above, the partial characteristics (14), (15), (26), and (27) can be evaluated in 
advance if the parameter distribution is modeled by splines, The expressions for the partial 
characteristics hence remain the same, but the spline reference parameters 

k$(~)-+k~(T~, P~'); k$(X)-+k$(Tx, Px) 
(28) 

must be substituted as parameters for S ~ and k~, and the integrals with respect to r in (17) 
k~(r) by using splines, and (21) must be evaluated taking account of giving 

The central and axial symmetries ofthe modelsunder considerationresult inthe factthat 
now parabolic splines emerge as the simplest two-point splines which approximate the parame- 
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Fig. 3. 
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Approximation of the working temperature distribu- 
tions by parabolic splines (dashes). 

ter distribution in the spherical and cylindrical geometries (Fig, 3) quite well, 
tion for the temperature spline relying on the values T~ and T X has the form 

The equa- 

T (r) = T~ - -  T x  r2 -6 }2Tx - -  X2T~ (29) 
~ _ X z  ~2 _ X2 

The pressure distribution has an analogous form. Parameters of the working profile T~, P~ 

and TX, PX (Fig. 3) should be selected as references in modeling the working distribution for 

the partial sink (27). The best results for the partial fluxes (14) and (15) are obtained 
, ' from the when conserving the source parameters T~ P~ and selecting the parameters T~ and PX 

condition for conservation of the appropriate quantities. The computational formulas hence 
have the form (Fig. 3) 

for ~X and 

T'x = 2XZ 3 (X 2 - -  ~2) x 
3~ z -  X-------%z T~ S T (r) dr (30) 

X (3~2--X 2) o 

T x = 3X2 - -  ~z T} -~ 3 (~z __ X z) .j" T (r) dr (31) 
2~ z 2~ 3 

for $ ~ X. 

The presence of absorption rayspassing to the computed point from different points of 
the spatial source ~ (Fig. 3) is taken into account in (30) and (31), The formulas for P~ 
are of analogous form. Also, (30) and (31) should be used in approximating the sources (26) 
by replacing X and Ti by 0 and T~ or L and TL, respectively, and ~ and T~ by X and T X for 
the corresponding terms in (13). 

Use of the partial characteristics to compute the heat transfer in the spherical and cy- 
lindrical geometries is not more complex than in the plane geometry, however, theirprepara- 
tion is substantially more difficult. This is related to both the more complex form of the 
expressions to compute the characteristics, and to the large volume of corresponding matri- 
ces because of the appearance of two geometric parameters ~ and X in place of one in the 
case of the intensity field or in the flat layer model. Hence, a computation of the partial 
fluxes and sinks for the cylindrical and spherical geometries is expedient only when it is 
necessary to execute mass computations. Otherwise~ it is more convenient to use the partial 
characteristics for the intensity field which permit the solution of the problem in any ge- 
ometry. 

NOTATION 

X, x,E, ~, z, L, r, coordinates ofradii inthe appropriateformulas; ~, frequency; P, 
pressure; T, temperature; k~, absorption factor taking forced emission into account; S~ 
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spectral equilibrium unilateral radiation flux; I, ~, integrated radiation intensity and 
flux with respect to the frequency; T, optical density; 0, ~, angles; and ~, ~, formal pa- 
rameters. 
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QUESTION OF THE NONSTATIONARY RADIANT INTERACTION OF SOLIDS 

G. A. Surkov UDC 536.3 

The nonstationary thermal interaction by the radiation of an unlimited plate and a 
source with a constan~ temperature is considered. A solution is obtained governing 
the temperature distribution in the plate with any previously assigned accuracy, 

The solution of linear-heat-conduction equations with nonlinear boundary conditions is 
often required in practice. Thus, e.g., at high source temperatures the heat from the source 
is transmitted to a heated body mainly by radiation. In such cases the convective component 
turns out to be negligible, Problems of this kind occur every time bodies are heated or 
cooled in such a way that the convective heat flux is small compared to the radiant heat 
fluxes. 

Despite the fact that the question of heat propagation in solids with radiant heat ex- 
change on the boundaries is encountered quite often as a phenomenon, the number of investiga- 
tions in the area of nonstationary heat conduction with radiation boundary conditions is, how- 
ever, quitesmall [1-8, et al.]. This isevidently explained by the difficulty of the mathemat- 
ical analysis. Moreover, the present lack of exact solutions of the problems mentioned 
makes investigation of the regularities of heat propagation in solids subjected to thermal 
radiation much more difficult. 

Meanwhile, the problem of radiant heat transfer becomes more and more valuable in con- 
nection with the achievements in studying space and a number of other domains for which large 
temperature differences are characteristic. 

An attempt is made in this paper to find the nonstationary temperature distribution in 
a plate which initially has the temperature To and is suddenly subjected to the effect of 
radiation. Mathematically, the problem can be formulated as follows 
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